
Overview of Files
The starting point here is that you have set up your kernel source tree
with the ARM patches.This description covers the 2.4 series kernels,
specifically 2.4.18. Things will change as kernel development contin-
ues. The ARM-specific files are in linux/arch/arm (code), and
linux/include/asm-arm (header files). In a configured kernel tree, the
appropriate architecture headers directory (linux/include/asm-arm
in our case) appears as linux/include/ asm so that it can be easily
referred to by other files that don't need to know which architecture
they are dealing with.Your machine-specific sub-directories go into
these directories.

Device drivers for things, even if they are only found on the ARM
architecture, or even only on your machine, do not go in these direc-
tories, but in the relevant parts of the main tree; usually linux/driv-
ers/, but sometimes linux/fs or /linux/net if there are filesystems,
partition types or network protocols specific to your device.Within
the ARM-specific directories your new or changed files go in appro-
priate linux/arch/arm/mach-XXX and linux/include/asm-arm/arch-
XXX directories. e.g. linux/arch/ arm/mach-anakin and
linux/include/asm-arm/arch-anakin. After configuration your head-
ers directory linux/include/asm-arm/arch-XXX appears as
linux/include/asm-arm/arch so that the correct machine header files
can be included by using this path.

The other directories in linux/arch/arm/ contain the generic ARM
code.
• kernel - core kernel code;
• mm - memory management code;
• lib - ARM-specific or optimised internal library functions

(backtrace, memcpy, io functions, bit-twiddling etc);
• nwfpe and fastfpe - two different floating-point implementations;
• boot - the directory in which the final compiled kernel is left and

contains stuff for generating compressed kernels;
• tools - has scripts for autogenerating files, such as mach-types

(see section Registering a Machine ID);
• def-configs - contains the default configuration files for each

machine.

The non machine-specific directories in linux/include/asm-arm are:
• arch - the link to the configured machine headers sub-directory

arch-XXX;
• hardware - headers for ARM-specific companion chips or devices;
• mach - generic interface definitions for things used by many

machines (irq, dma, pci) and the machine description macros;
• proc - link to proc-armo or proc-armv appropriate for configured

machine;
• proc-armo, and proc-armv - 26 and 32-bit versions of core

processor-related headers.

So, you have some ARM* based hardware that you want to port the
Linux kernel to. This is a task that a competent software engineer can
undertake assisted by relevant information such as this article,
although previous familiarity with the Linux kernel will make it a lot
easier. If your platform is a lot like something that has gone before
then the port can be relatively simple, but if it's all new then it could
be a big job,and you might well be advised to get help from someone
experienced in these things, depending on how much of a challenge
you want. And of course, if you don't actually know that your hard-
ware works properly (you usually know this if it has already run some
OS other than Linux), then again things can get exciting as you may
not know if the hardware is broken or your kernel changes are wrong.

This article can't tell you everything you need to know about kernel
hacking – it's a huge subject. If you don't know how the kernel works
you need to read some relevant documentation. What I will try to
cover are the procedures and conventions used in the ARM kernel
development community, how the ARM architecture files are set out
in the source, and the basics of what you will need to change to port
the core of the kernel to your new platform – enough so that it boots
and sends serial debug info.

The platform we will use in the examples is Anakin, as this isn't too
complicated, but is sufficiently unlike other platforms to be an archi-
tecture, rather than a sub-architecture, and thus be a non-trivial exam-
ple. In case you were wondering,Anakin is a vehicle telematics plat-
form designed by Acunia n.v.,of Belgium,for which Aleph One did the
initial kernel port. It contains an Intel® StrongARM SA-1110 with some
memory and an FPGA containing the core devices (memory con-
troller, video controller, serial ports, interrupt controller).

Terminology
Talking about this subject can be confusing with multiple meanings
and some overlap of the terms 'device', 'platform', 'machine', and
'architecture', depending on context. For example, a device can be a
thing such as a PDA, or a bit of hardware that the kernel must access
via a device-driver. Here are the definitions used in this article.

• architecture: Either the CPU-type (as in 'ARM architecture',
'x86 architecture'), or category of system design as in
'footbridge architecture' or 'Intel® SA-1100 architecture'. It is
sometimes used to mean the same as 'machine' below too;

• device: A hardware item that the kernel accesses using a
device-driver;

• machine: Your particular hardware, as determined by the
assigned machine-ID within the kernel;

• platform: Same as machine;
• sub-architecture: Same as machine.

A machine may be a system architecture in its own right, but is usual-
ly a sub-architecture.

Porting the Linux Kernel to a
New ARM Platform
Wookey and Tak-Shing, Aleph One • www.aleph1.co.uk

WHITE PAPER:

52 VOLUME 4, SUMMER 2002www.intel.com/pca/developernetwork

Not every new machine is a whole new architecture, most are only
sub-architectures - e.g. all the Intel® SA-1100 and SA-1110 Processor-
based devices are grouped together under the sa1100 architecture in
linux/arch/arm/mach-sa1100.You will need to take a look at the exist-
ing machines to see if yours more naturally goes into the tree as a sub-
architecture or not. It is useful to do a bit of research to see which
other machines are closest to yours in various aspects. Often the eas-
iest way to start is to copy over the files of the nearest machine to
yours.

armo and armv
Throughout the ARM architecture core directories you will find both
-armv and -armo versions of some files.These indicate variants for the
ARM processors 26-bit mode and 32-bit mode.The 26-bit mode is in
the process of being phased out of ARM CPU designs and is only used
in a few early machines which predate the existence of the 32-bit
mode (e.g. the A5000, which has an ARM3 CPU).

The suffixes have the following meaning:
• armo is for 26-bit stuff;
• armv is for 32-bit stuff.

Registering a Machine ID
Each device is identified in the kernel tree by a machine ID. These
are allocated by the kernel maintainer to keep the huge number of
ARM device variants manageable in the source trees.

The first thing you need to do in your port is register your new
machine with the kernel maintainer to get a number for it.This is not
actually necessary to begin work, but you'll need to do this eventual-
ly so it's best to do it at the beginning and not have to change your
machine name or ID later.

You register a new architecture by mailing
<rmk@arm.linux.org.uk>, or filling in an on-line form at
http://www.armlinux.org.uk/developer/machines/. The on-line ver-
sion is preferred as this will also set up the password you need to
use the patch-system.

If using mail, please give the mail a subject of Register new architec-
ture:

Name: <name of your architecture>
ArchDir: <name of include/asm-arm/arch-* directory>
Type: <MACH_TYPE_* macro name>
Description:
<description of your architecture>

Please follow this format - it is an automated system. You should
receive a reply within one day like this:

You have successfully registered your architecture!
>
> The registered architecture name is
> Anakin
>
> The architecture number that has been allocated is:
> 57
>

> This number corresponds to the following macros:
> machine_is_anakin()
> MACH_TYPE_ANAKIN
> CONFIG_ARCH_ANAKIN
>
> and your architecture-specific include directory is
> include/asm-arm/arch-anakin
>
> If, in the future, you wish to alter any of these,
> entries, please
> contact rmk@arm.linux.org.uk.

Then you need to add the info to linux/arch/arm/tools/mach-types
with a line like this:
machine_is_xxx CONFIG_xxx MACH_TYPE_xxx
machine_ID
lart SA1100_LART LART 27
anakin ARCH_ANAKIN ANAKIN 57

or go to: http://www.arm.linux.org.uk/developer/machines/ where
you can download the latest version of mach-types.

The above file is needed so that the script linux/arch/arm/
tools/gen-mach-types can generate linux/include/asm-arm/mach-
types.h which sets the defines and macros mentioned above that are
used by much of the source to select the appropriate code.You should
always use these macros in your code, and not test
machine_arch_type nor __machine_arch_type directly as this will pro-
duce less efficient code.The macros are created in such a way that
unused code can be efficiently optimised away by the compiler.

Config files
Add a new config file in linux/arch/arm/def-configs/ named
<machine-name>, containing the default configuration options for
your machine. You should also edit linux/arch/arm/config.in so
that make config will support your machine. This file specifies the
new CONFIG_ symbols for your machine and the dependencies of
them on other CONFIG_ symbols.

When you do make <machine-name>_config, e.g. make anakin_con-
fig, to build a kernel, then the file corresponding to the first part of
the parameter is copied out of linux/arch/arm/def-configs/ to
linux/.config.

Kernel Basics
There are a number of basic symbols that you need to know the
meanings of to understand the kernel sources. Here is a list of the
most important ones.

Throughout the code you need to keep in mind the mapping
between physical and virtual memory. The kernel deals exclusively in
virtual memory once it has started. Your hardware specifications deal
in physical memory. One of the fundamental things you need to spec-
ify is the mapping between these two. This is contained in the
__virt_to_phys() macro in include/asm-arm/arch-XXX/memory.h
(along with corresponding reverse mappings). Normally, this macro
is simply:

phys = virt - PAGE_OFFSET + PHYS_OFFSET

53VOLUME 4, SUMMER 2002 www.intel.com/pca/developernetwork

Decompressor Symbols
ZTEXTADDR

Start address of decompressor. As the MMU is off at the time
this code is called the addresses are physical.You normally call
the kernel at this address to start it booting. This doesn't have
to be located in RAM, it can be in flash or other read-only or
read-write addressable medium.

ZBSSADDR
Start address of zero-initialised work area for the decompres-
sor. This must be pointing at RAM. The decompressor will
zero initialise this for you. Again, the MMU will be off.

ZRELADDR
This is the address where the decompressed kernel will be
written, and eventually executed.The following constraint
must be valid:

__virt_to_phys(TEXTADDR) == ZRELADDR

The initial part of the kernel is carefully coded to be position
independent.

INITRD_PHYS
Physical address to place the initial RAM disk. Only relevant if
you are using the bootpImage stuff (which only works on the
older struct param_struct style of passing the kernel boot
information).

INITRD_VIRT
Virtual address of the initial RAM disk.The following
constraint must be valid:

__virt_to_phys(INITRD_VIRT) == INITRD_PHYS

PARAMS_PHYS
Physical address of the struct param_struct or tag list, giving
the kernel various parameters about its execution
environment.

Kernel Symbols
PHYS_OFFSET

Physical start address of the first bank of RAM.

PAGE_OFFSET
Virtual start address of the first bank of RAM. During the
kernel boot phase, virtual address PAGE_OFFSET will be
mapped to physical address PHYS_OFFSET, along with any
other mappings you supply. This should be the same value as
TASK_SIZE.

TASK_SIZE
The maximum size of a user process in bytes. Since user space
always starts at zero, this is the maximum address that a user
process can access+1. The user space stack grows down from
this address.

Any virtual address below TASK_SIZE is deemed to be user
process area, and therefore managed dynamically on a process
by process basis by the kernel.This is referred to as the 'user
segment'.

Anything above TASK_SIZE is common to all processes. This is
referred to as the 'kernel segment'.

Note that this means that you can't put IO mappings below
TASK_SIZE, and hence PAGE_OFFSET.

TEXTADDR
Virtual start address of kernel, normally PAGE_OFFSET +
0x8000. This is where the kernel image ends up. With the
latest kernels, it must be located at 32768 bytes into a 128MB
region. Previous kernels just required it to be in the first
256MB region.

DATAADDR
Virtual address for the kernel data segment. Must not be
defined when using the decompressor.

VMALLOC_START, VMALLOC_END
Virtual addresses bounding the vmalloc() area. There must
not be any static mappings in this area; vmalloc will overwrite
them.The addresses must also be in the kernel segment (see
above). Normally, the vmalloc() area starts VMALLOC_OFFSET
bytes above the last virtual RAM address (found using variable
high_memory).

VMALLOC_OFFSET
Offset normally incorporated into VMALLOC_START to pro-
vide a hole between virtual RAM and the vmalloc area.We do
this to allow out of bounds memory accesses (eg, something
writing off the end of the mapped memory map) to be
caught. Normally set to 8MB.

Architecture Specific Macros
BOOT_MEM(pram,pio,vio)

`pram' specifies the physical start address of RAM. Must
always be present, and should be the same as PHYS_OFFSET.

`pio' is the physical address of an 8MB region containing IO
for use with the debugging macros in arch/arm/kernel/
debug-armv.S.

`vio' is the virtual address of the 8MB debugging region.

It is expected that the debugging region will be re-initialized
by the architecture specific code later in the code (via the
MAPIO function).

BOOT_PARAMS
Same as, and see PARAMS_PHYS.

FIXUP(func)
Machine specific fixups, run before memory subsystems have
been initialized.

MAPIO(func)
Machine specific function to map IO areas (including the
debug region above).

INITIRQ(func)
Machine specific function to initialize interrupts.

54 VOLUME 4, SUMMER 2002www.intel.com/pca/developernetwork

Kernel Porting
Finally we get to the meat of the task.Here we list the most important
files,and describe their purpose and the sort of things you should put
in them. It looks daunting to start with but most of what is required is
just a matter of filling in the numbers appropriate to your hardware.
Now that so many different machines are supported it is rare that you
have to write much new code - nearly everything can be taken from
a suitable donor machine. This is easier to do if you know which
machines have a similar architecture to your own.

Throughout this list XXX represents your machine name - 'anakin' in
these examples

Files
arch/arm/Makefile

Insert the following to this file (replace XXX with your
machine name):

ifeq ((CONFIG_ARCH_XXX),y)
MACHINE = xxx
endif

arch/arm/boot/Makefile
Here you specify ZTEXTADDR, the start address of the kernel
decompressor.This should have the same value as the address
to which Linux is uploaded in your boot loader. This is nor-
mally 32K (0x8000) above the base of RAM. The space
between the start of RAM and the kernel is used for page
tables.

ifeq ((CONFIG_ARCH_XXX),y)
ZTEXTADDR = 0xXXXX8000
endif

arch/arm/kernel/entry-armv.S
Machine-specific IRQ functions. You provide the assembly
macros disable_fiq, get_irqnr_and_base, and irq_prio_table
here. disable_fiq and irq_prio_table is usually empty, but
get_irqnr_and_base must be implemented carefully: you
should use the zero flag to indicate the presence of interrupts,
and put the correct IRQ number in irqnr.

arch/arm/kernel/debug-armv.S
These are the low-level debug functions, which talk to a seri-
al port without relying on interrupts or any other kernel func-
tionality. You'll need to use these functions if it won't boot.
The functions you need to implement are addruart, senduart
and waituart, using ARM assembly. They give you the address
of the debug UART, send a byte to the debug UART, and wait
for the debug UART, respectively.

arch/arm/mach-XXX/Makefile
You need to add a target for your machine, listing the object
files in this directory.That will be at least the following:

+O_TARGET := MACHINE.o
+obj-y := arch.o irq.o mm.o

arch/arm/mach-XXX/arch.c
This should contain the architecture-specific fix ups and IO
initialisations. (The latter used to go in arch/arm/mach-
XXX/mm.c but that file is now deprecated). For the meaning
of the symbols, refer to Kernel Basics.

The setup for your machine is done with a set of macros, start-
ing with MACHINE_START. The parameters you give are filled
in to a data structure machine_desc describing the machine.
One of the items is the fixup function which, if specified, will
be called to fill in or adjust entries dynamically at boot time.
This is useful for detecting optional items needed at boot-time
(e.g.VRAM in a Risc PC). Note that it should not be used to do
main memory size detection, which is is the job of the boot-
loader.

static void __init
fixup_XXX(struct machine_desc *desc, struct param_
struct *params,char **cmdline, struct meminfo *mi)
{

ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0);
setup_ramdisk(1, 0, 0, CONFIG_BLK_DEV_RAM_SIZE);
setup_initrd(0xc0800000, X * 1024 * 1024);

}

MACHINE_START(ANAKIN, "XXX")
MAINTAINER("Acunia N.V.")
BOOT_MEM(XXX, YYY, ZZZ)
VIDEO(VVV, WWW)
FIXUP(fixup_XXX)
MAPIO(XXX_map_io)
INITIRQ(genarch_init_irq)

MACHINE_END

static struct map_desc XXX_io_desc[] __initdata =
{ IO BASE, IO START, IO SIZE, DOMAIN IO, 0,1,0,0,
LAST_DESC

};

void __init
XXX_map_io(void)
{

iotable_init(XXX_io_desc);
}

arch/arm/mach-XXX/irq.c
You should provide the XXX_init_irq function here. This sets
up the interrupt controller. Interrupt mask and unmask func-
tions go here too.

arch/arm/mach-XXX/mm.c
This file is now deprecated. Its content (IO initialisation) has
moved into arch/arm/mach-XXX/arch.c

include/asm/arch/dma.h
Defines for DMA channels, and DMA-able areas of memory.
For machines without DMA, you can just declare 0 DMA
channels as follows:

continued on page 58

55VOLUME 4, SUMMER 2002 www.intel.com/pca/developernetwork

continued from page 55

#define MAX_DMA_ADDRESS 0xffffffff
#define MAX_DMA_CHANNELS 0

include/asm/arch/hardware.h
In this file, you need to define the memory addresses, IO
addresses, and so on, according to your hardware specifica-
tions (memory map and IO map). The _START addresses are
the physical addresses, the _BASE addresses are the virtual
adresses to which each memory or IO region will be
mapped. Refer to other similar machines for examples.

include/asm/arch/io.h
Here you define the macros IO_SPACE_LIMIT (as 0xffffffff),
__io(addr),__arch_getw(addr),__arch_putw(data,addr),
and other related macros, according to your CPU. For CPUs
that already have an implementation (for example Intel®

SA-1110 Processor and Intel® XScale™ Microarchitecture),
you can just copy it across and/or reuse the existing io.h for
that CPU.

include/asm/arch/irq.h
Here you need to provide the fixup_irq macro. In almost all
cases, this is just a direct mapping:

#define fixup_irq(i) i

include/asm/arch/irqs.h
In this file you will define all your IRQ numbers. For example:

#define IRQ_UART0 0

include/asm/arch/keyboard.h
This file is typically here to cheat the VT driver into thinking
that there is a null keyboard. Most ARM devices don't have a
real one. If you do this is where to put the keyboard IO
defines and structs.

include/asm/arch/memory.h
Unless you have an exotic memory-map this is platform-
invariant and you can copy this from other implementations.

include/asm/arch/param.h
This is included by asm/param.h. Here you can redefine HZ
(default 100), NGROUPS (default -1), and MAXHOSTNAME-
LEN (default 64). If you are okay with the above defaults, you
still need to create this file but you can make it an empty file
(like the Anakin port).

include/asm/arch/system.h
This file is included by arch/arm/kernel/process.c.You are
required to define arch_idle() and arch_reset() functions.
arch_idle() is called whenever the machine has no other
process to run - i.e. it's time to sleep.arch_reset() is called
on system reset.The actual implementation of these functions
depends on your specific hardware, and there are some sub-
tleties associated with arch_idle(). This function will nor-
mally put the hardware of your specific device into a low-
power mode and then call the generic cpu function

cpu_do_idle to do the same thing for the cpu. A typical imple
mentation would be as in the listing below, however in
Anakin's case this won't work, because the interrupt con-
troller is in the ASIC, and that is clocked by the processor's
mclk. Stopping the CPU stops the ASIC as well, which means
that a wake-up interrupt will never get generated, so calling
cpu_do_idle just hangs forever.You need to know about this
sort of hardware detail to get a successful port.

static inline void arch_idle(void)
{

/*
* Please check include/asm/proc-fns.h,

include/asm/cpu-*.h
* and arch/arm/mm/proc-*.S. In particular,
cpu_do_idle is

* a macro expanding into cpu_XXX_do_idle, where
XXX is the

* CPU configuration, e.g. arm920, sa110, xs80200,
etc.

*/
cpu_do_idle(IDLE_WAIT_SLOW);

}

static inline void arch_reset(char mode)
{

switch (mode) {
case 's':

/* Software reset (jump to address 0) */
cpu_reset(0);
break;

case 'h':
/* TODO: hardware reset */

}
}

include/asm/arch/time.h
Here you have to supply your timer interrupt handler and

related functions. See the template below:

/*
* XXX_gettimeoffset is not mandatory. For example,
anakin has
* not yet implemented it. dummy_gettimeoffset (defined
in
* arch/arm/kernel/time.c) is the default handler, if

you omit
* XXX_gettimeoffset.
*/
static unsigned long XXX_gettimeoffset(void)
{

/* Return number of microseconds since last inter-
rupt */

}

static void XXX_timer_interrupt(int irq, void *dev_id,
struct

pt_regs *regs)
{

58 VOLUME 4, SUMMER 2002www.intel.com/pca/developernetwork

/* Add hardware specific stuffs, if applicable */
do_timer(regs);
do_profile (regs);

}

extern inline void setup_timer(void)
{

gettimeoffset = XXX_gettimeoffset;
timer_irq.handler = XXX_timer_interrupt;
setup_arm_irq(IRQ_XXX, &timer_irq);
/* Other hardware specific setups */

}

The do_profile() function is there to allow kernel profiling.

include/asm/arch/timex.h
This file is included by include/asm/timex.h, which is in turn
included by include/linux/timex.h. Basically you need to
define your clock rate here. For example, for Anakin it is 1/8ms:

#define CLOCK_TICK_RATE 1000 / 8

include/asm/arch/uncompress.h
This file is included by arch/arm/boot/compressed/misc.c
(which, among other things, outputs the Uncompressing
Linux message). You are required to provide two functions,
arch_decomp_setup to setup the UART, and puts for out-
putting the decompression message to the UART:

static void_puts(char char *s)

/*
* Hardware-specific routine to put a string to the
debug

* UART, converting "\n" to "\n\r" on the way.
*/

static inline void arch_decomp_setup(void)

/*

* Hardware-specific routine to put a string to
setup the

* UART mentioned above.
*/

/* Watchdog is not used for most ARM Linux implemen-
tations */
#define arch_decomp_wdog()

include/asm/arch/vmalloc.h
This file is largely invariant across platforms, so you can just
copy it from other ARM architectures without worrying too
much.

If you get all the above right then you should have a bootable com-
pressed kernel for your architecture that can output debug messages
though the debug functions. However, this isn't actually much use
without some support for the devices in your system. In Anakin's case
this is the frame buffer, UARTs under interrupt control, touchscreen
and compact flash interface (ide). Console driver functionality is also
required to actually interact with these devices. We'll look at how to
add these drivers in a future article.

Further Information
A number of resources are also available both on-line and in book format.
The ARM Linux Project – http://www.arm.linux.org.uk/
Linux Console Project – http://sourceforge.net/projects/linuxconsole/
Linux Framebuffer Driver Writing HOWTO – http://www.linux-fbdev.org/HOWTO/

Bibliography
The ARM Linux Project, Russell King,The ARM Linux Project, 2002.

Linux Device Drivers, Alessandro Rubini and Jonathan Corbet, 2nd Edition, 0596000081,
O'Reilly & Associates, 2001.

Linux Framebuffer Driver Writing HOWTO, James Simmons, Linux-fbdev.org, 1999.

Linux Console Project, James Simmons, Sourceforge, 2002.

Background
This article is based on a chapter of the second edition of the Aleph
One ‘Guide to ARMLinux for Developers’ book. The first edition is
available now and the second edition will be out later this year.
www.aleph1.co.uk.armlinux/thebook.html. ❍

59VOLUME 4, SUMMER 2002 www.intel.com/pca/developernetwork

Don’t miss another issue...
Subscribe On-Line for your copy of

Wireless Solutions Journal
Today at

www.WirelessSolutionsJournal.com

